Кратный корень - definitie. Wat is Кратный корень
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Кратный корень - definitie

АРГУМЕНТ, ПРИ КОТОРОМ МНОГОЧЛЕН ПРИНИМАЕТ ЗНАЧЕНИЕ НУЛЬ
Корень алгебраического уравнения; Кратный корень; Кратность корня многочлена
  • Из графика многочлена <math>x^3-6x^2+11x-6</math> видно, что у него три корня: 1, 2 и 3.

КРАТНЫЙ КОРЕНЬ         
алгебраического уравнения - такое число b , что f(х) делится без остатка на 2-ю или более высокую степень m двучлена (х - b); число m - кратность корня b.
Кратный корень         

многочлена

f (x) = a0xn + a1xn-1 +... + an,

число с такое, что f (x) делится без остатка на вторую или более высокую степень двучлена (х - с). При этом с называют корнем кратности, если f (x) делится на (х-с) k, но не делится на (х-c) k+1. Корень многочлена f (x) кратности k является также корнем производных этого многочлена до (k - 1)-го порядка включительно, т. е. многочленов f'(x), f''(x),..., f (k-1)(x). К. к. многочлена f (x) называется К. к. уравнения f (x) = 0. См. также Корень, Уравнение.

Корень (грамматика)         
ЧАСТЬ СЛОВА, НЕСУЩАЯ ОСНОВНОЙ ЕГО СМЫСЛ
Корень слова; Корень (часть слова); Корень (морфема); Корень (лингвистика); Корень, часть слова
Ко́рень — морфема, несущая лексическое значение слова (или основную часть этого значения); в русском языке корень имеется во всех самостоятельных частях речи и отсутствует во многих служебных частях речи, междометиях и звукоподражательных словах (например, его нет в союзе «и», междометии «ах» и подобных лексических единицах). В сложных словах — несколько корней.

Wikipedia

Корень многочлена

Корень многочлена (не равного тождественно нулю)

a 0 + a 1 x + + a n x n {\displaystyle a_{0}+a_{1}x+\dots +a_{n}x^{n}}

над полем K {\displaystyle K}  — это элемент c K {\displaystyle c\in K} (либо элемент расширения поля K {\displaystyle K} ) такой, что выполняются два следующих равносильных условия:

  • данный многочлен делится на многочлен x c {\displaystyle x-c} ;
  • подстановка элемента c {\displaystyle c} вместо x {\displaystyle x} обращает уравнение
a 0 + a 1 x + + a n x n = 0 {\displaystyle a_{0}+a_{1}x+\dots +a_{n}x^{n}=0}

в тождество, то есть значение многочлена становится равным нулю.

Равносильность двух формулировок следует из теоремы Безу. В различных источниках любая одна из двух формулировок выбирается в качестве определения, а другая выводится в качестве теоремы.

Говорят, что корень c {\displaystyle c} имеет кратность m {\displaystyle m} , если рассматриваемый многочлен делится на ( x c ) m {\displaystyle (x-c)^{m}} и не делится на ( x c ) m + 1 . {\displaystyle (x-c)^{m+1}.} Например, многочлен x 2 2 x + 1 {\displaystyle x^{2}-2x+1} имеет единственный корень, равный 1 {\displaystyle 1} кратности 2 {\displaystyle 2} . Выражение «кратный корень» означает, что кратность корня больше единицы.

Говорят, что многочлен имеет n {\displaystyle n} корней без учёта кратности, если каждый его корень учитывается при подсчёте один раз. Если же каждый корень учитывается количество раз, равное его кратности, то говорят, что подсчёт ведётся с учётом кратности.

Wat is КРАТНЫЙ КОРЕНЬ - definition